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● Google 

● Cellular networks
● Facebook

Distributed systems are

Networks of devices/machines 
(“nodes”), such as computers or servers 
that communicate with one another to 
complete tasks

Distributed systems surround us.

Distributed systems

Some examples:



Distributed tracing is when a software 
(instrumentation) tracks the flow of 
service requests in a distributed system

This is useful for:

● Regulation
● Analyzing performance

  
● Debugging

What is distributed tracing?

https://www.scaleyourapp.com/difference-between-centr
alized-decentralized-distributed-systems-explained/

https://static.googleusercontent.com/media/research.goo
gle.com/en//pubs/archive/36356.pdf

https://www.uplers.com/wp-content/uploads/2020/04/Top
-5-Debugging-Tools-Your-Front-end-Developers-Should-
Have-Hands-On.jpg

Gives developers information about interactions in 
the system.

A trace is the data about the request path that 
results from tracing



Span (definition):

“The ‘span’ is the primary building block of a distributed trace, 
representing an individual unit of work done in a distributed system.”

– OpenTracing.io

Tracing: Spans

A

time

B

parent-child 
relationship



● Caller-callee relationships
○ B dependent on A
○ C dependent on A

Tracing: Challenges With Spans

A

B C● Is C dependent on B?
● Instrumentation could help
● Tedious, hard to do with 

heterogeneous systems
● How to infer relationship with 

minimal instrumentation?



Spans

Tracing: Spans vs. Segments

A

B
B

A1

A2

A3

Segments

● Many relationships 
between parts of A and B
○ E.g. asynchronous 

concurrency missed

● A1 happens before A2 and 
B;  A2 and B have no 
dependency on one 
another

● Requires more 
instrumentation



Developers use tracing to determine 
causality within a system.

Therefore, causal relationships 
should be thoroughly represented 
throughout the entire system in a 
trace

To have enough information, more 
instrumentation can be used

The Ideal Trace: Introduction

Ideal Trace



● Happens-before relationship
○ A1 must occur for B to 

occur

The Ideal Trace: Causality

● Concurrent relationship
○ Segments can happen in any 

order or simultaneously
○ No dependency between 

segments
○ e.g. B and A2

B

A1

A2

A3

A1 B



The Ideal Trace: Applications

4 s

7 s

Critical Path: longest path in 
trace

Determines minimum 
request path latency, shows 
amount of “slack” in system

“Slack Analysis”B

A1

A2

A3
3 s 4 s

2 s 2 s



Overview

Distributed Systems & 
Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04



The Mystery Machine produces a Global Causal Model (GCM)
● to approach the ideal trace, The Mystery Machine uses many 

traces rather than just one to infer dependencies while 
minimizing instrumentation

● uses a segment-based model – more clarity
● shows happens-before dependencies between every segment 

across the traces such that the dependencies hold for every 
trace

● presents inferred GCM of all system interaction to user

The Mystery Machine: GCM



● Problem: Assumes enough traces to capture every interaction in 
request paths

● Problem: Assumes that all traces are correct, leaving no room for error 
such as:
○ Clock skew
○ Anomalies in structure (caused by bugs)

The Mystery Machine: Limitations
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● Address rigidity of The Mystery Machine
○ Increase tolerance
○ Flukes should not affect GCM

User-Defined Threshold

● Introduce threshold – relationship is only removed from final 
model if violations to relationship exceeds threshold

● User has freedom to choose threshold amount



● Implemented in Hadoop MapReduce for scalability
● MapReduce allows the program to execute efficiently across a cluster of 

devices
● Have had successful runs of MapReduce implementation on small 

“pseudo-clusters” (simulated clusters) as we don’t currently have access 
to an actual distributed system

Scooby Systems: Scalability
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● Problem: The Mystery Machine assumes that there are no 
repeats of the same segment or event

● GCM concludes no dependency between B and C because 
The Mystery Machine sees both B -> C and C -> B

● But what if B -> C is the true structure?

Addressing Repeats

A1

Cache CacheDatabase Database

A2 A3 A4 A5 D6 D7 D8 D9



Without further instrumentation, need a way to distinguish repeats
Add more information:
● Currently Scooby Systems increases specificity in instances of a segment by 

associating them with the process ID
● Backtrace is more accurate – e.g. A-cache and D-cache instead of repeats of 

just cache
● But what if A calls cache and database twice in the same trace?

○ Could increase backtrace depth – include A’s parent information
○ However, at some point, would be unable to consolidate information 

about cache

Next Steps: Backtrace Depth



Moving Forward

● Implement backtrace information

● Proposing solutions / further analysis of The Mystery 
Machine limitations

● Evaluation
○ Traces from DeathStarBench
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