
Threshold-Based
Inference of

Dependencies in
Distributed Systems

Anshul Rastogi
Mentors: Darby Huye, Max Liu, & Dr. Raja Sambasivan

Project partner: Tanmay Gupta

Overview

Distributed Systems
& Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

● Google

● Cellular networks
● Facebook

Distributed systems are

Networks of devices/machines
(“nodes”), such as computers or servers
that communicate with one another to
complete tasks

Distributed systems surround us.

Distributed systems

Some examples:

Distributed tracing is when a software
(instrumentation) tracks the flow of
service requests in a distributed system

This is useful for:

● Regulation
● Analyzing performance

● Debugging

What is distributed tracing?

https://www.scaleyourapp.com/difference-between-centr
alized-decentralized-distributed-systems-explained/

https://static.googleusercontent.com/media/research.goo
gle.com/en//pubs/archive/36356.pdf

https://www.uplers.com/wp-content/uploads/2020/04/Top
-5-Debugging-Tools-Your-Front-end-Developers-Should-
Have-Hands-On.jpg

Gives developers information about interactions in
the system.

A trace is the data about the request path that
results from tracing

Span (definition):

“The ‘span’ is the primary building block of a distributed trace,
representing an individual unit of work done in a distributed system.”

– OpenTracing.io

Tracing: Spans

A

time

B

parent-child
relationship

● Caller-callee relationships
○ B dependent on A
○ C dependent on A

Tracing: Challenges With Spans

A

B C● Is C dependent on B?
● Instrumentation could help
● Tedious, hard to do with

heterogeneous systems
● How to infer relationship with

minimal instrumentation?

Spans

Tracing: Spans vs. Segments

A

B
B

A1

A2

A3

Segments

● Many relationships
between parts of A and B
○ E.g. asynchronous

concurrency missed

● A1 happens before A2 and
B; A2 and B have no
dependency on one
another

● Requires more
instrumentation

Developers use tracing to determine
causality within a system.

Therefore, causal relationships
should be thoroughly represented
throughout the entire system in a
trace

To have enough information, more
instrumentation can be used

The Ideal Trace: Introduction

Ideal Trace

● Happens-before relationship
○ A1 must occur for B to

occur

The Ideal Trace: Causality

● Concurrent relationship
○ Segments can happen in any

order or simultaneously
○ No dependency between

segments
○ e.g. B and A2

B

A1

A2

A3

A1 B

The Ideal Trace: Applications

4 s

7 s

Critical Path: longest path in
trace

Determines minimum
request path latency, shows
amount of “slack” in system

“Slack Analysis”B

A1

A2

A3
3 s 4 s

2 s 2 s

Overview

Distributed Systems &
Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

The Mystery Machine produces a Global Causal Model (GCM)
● to approach the ideal trace, The Mystery Machine uses many

traces rather than just one to infer dependencies while
minimizing instrumentation

● uses a segment-based model – more clarity
● shows happens-before dependencies between every segment

across the traces such that the dependencies hold for every
trace

● presents inferred GCM of all system interaction to user

The Mystery Machine: GCM

● Problem: Assumes enough traces to capture every interaction in
request paths

● Problem: Assumes that all traces are correct, leaving no room for error
such as:
○ Clock skew
○ Anomalies in structure (caused by bugs)

The Mystery Machine: Limitations

Overview

Distributed Systems &
Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

● Address rigidity of The Mystery Machine
○ Increase tolerance
○ Flukes should not affect GCM

User-Defined Threshold

● Introduce threshold – relationship is only removed from final
model if violations to relationship exceeds threshold

● User has freedom to choose threshold amount

● Implemented in Hadoop MapReduce for scalability
● MapReduce allows the program to execute efficiently across a cluster of

devices
● Have had successful runs of MapReduce implementation on small

“pseudo-clusters” (simulated clusters) as we don’t currently have access
to an actual distributed system

Scooby Systems: Scalability

Overview

Distributed Systems &
Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

● Problem: The Mystery Machine assumes that there are no
repeats of the same segment or event

● GCM concludes no dependency between B and C because
The Mystery Machine sees both B -> C and C -> B

● But what if B -> C is the true structure?

Addressing Repeats

A1

Cache CacheDatabase Database

A2 A3 A4 A5 D6 D7 D8 D9

Without further instrumentation, need a way to distinguish repeats
Add more information:
● Currently Scooby Systems increases specificity in instances of a segment by

associating them with the process ID
● Backtrace is more accurate – e.g. A-cache and D-cache instead of repeats of

just cache
● But what if A calls cache and database twice in the same trace?

○ Could increase backtrace depth – include A’s parent information
○ However, at some point, would be unable to consolidate information

about cache

Next Steps: Backtrace Depth

Moving Forward

● Implement backtrace information

● Proposing solutions / further analysis of The Mystery
Machine limitations

● Evaluation
○ Traces from DeathStarBench

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, infographics & images by Freepik

AcknoWLEDGEMENTS
Thanks to Darby Huye, Max Liu, Raja
Sambasivan, & D.O.C.C. Lab for their guidance

Thank you to Tanmay Gupta for being my
PRIMES partner for the first iteration of
Scooby Systems in 2021.

Thanks to the PRIMES Program
for providing this opportunity

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
http://bit.ly/2PfT4lq

